
\qquad
\qquad

1

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
2

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
4

Flow Rate

\qquad

- Consider the steady laminar flow of fluid \qquad through an enclosed pipe as shown

- The mass flow rate must be equal at both ends of the pipe \qquad
\qquad
5
- The volume of fluid passing through A_{1} in time Δt is $A_{1} \Delta l_{1}$, where Δl_{1} is the distance the fluid moves in time Δt \qquad
- The mass flow rate at point 1 is therefore

$$
\frac{m_{1}}{\Delta t}=\frac{\rho_{1} \Delta V_{1}}{\Delta t}=\frac{\rho_{1} A_{1} \Delta l_{1}}{\Delta t}=\rho_{1} A_{1} v_{1}
$$

- This must equal the mass flow rate at
\qquad
\qquad point 2

$$
\rho_{1} A_{1} v_{1}=\rho_{2} A_{2} v_{2}
$$

- This is called the equation of continuity
\qquad
\qquad
\qquad
- Assuming that the fluid is incompressible (ρ does not change with pressure)
- Valid assumption for liquids under most circumstances

$$
\begin{gathered}
A_{1} v_{1}=A_{2} v_{2} \\
\text { or } \\
A v=\text { constant }
\end{gathered}
$$

\qquad
\qquad
\qquad
\qquad

- The product $A v$ represents the volume flow rate (or just flow rate)
\qquad
\qquad
\qquad
7

Example

\qquad
In humans, blood flows from the heart into the \qquad aorta, then arteries, and eventually into a myriad of tiny capillaries. The blood returns to the heart via the veins. The radius of the aorta is about 1.2 cm and the blood passes through it at a speed of about $40 \mathrm{cms}^{-1}$. A typical capillary has a radius of about $4 \times 10^{-4} \mathrm{~cm}$ and \qquad blood flows through with a speed of about $5 \times 10^{-4} \mathrm{~ms}^{-1}$. Estimate the number of \qquad capillaries in the human body.

8

$$
\begin{aligned}
A_{1} v_{1} & =A_{2} v_{2} \\
\pi r_{\text {corta }}^{2} v_{1} & =N \pi r_{\text {capillaries }}^{2} v_{2} \\
N & =\frac{r_{\text {aorta }} v_{1}}{r_{\text {capilaries }}^{2} v_{2}} \\
N & =\frac{\left(1.2 \times 10^{-2} \mathrm{~m}\right)^{2}\left(0.4 \mathrm{~ms}^{-1}\right)}{\left(4 \times 10^{-6} \mathrm{~m}\right)^{2}\left(5 \times 10^{-4} \mathrm{~ms}^{-1}\right)} \\
N & =7 \times 10^{9}
\end{aligned}
$$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Bernoulli's Principle

- Daniel Bernoulli (1700-1782) worked out a principle concerning fluids in motion
- Where the velocity of a fluid is high, the pressure is low, and where the velocity is low, the pressure is high
- Bernoulli developed an equation that expresses this principle quantitatively

10

Bernoulli's Equation

$\frac{1}{2} \rho v^{2}+\rho g z+p=\mathrm{constant}$
ρ - fluid density
v - speed of fluid
g - gravitational field strength
z - the height above a chosen level
p - the pressure at the height z

- Bernoulli's equation is an expression of conservation of energy

11

Example

- Water circulates through a house in a hot water system. The water enters the house with a speed of $0.50 \mathrm{~ms}^{-1}$ through a 4.0 cm diameter pipe with a pressure of $3.0 \times 10^{5} \mathrm{~Pa}$. Calculate the flow rate and pressure in a 1.0 cm diameter pipe on the second floor 5.0 m above. Assume the pipes do not divide into branches.
- Calculate flow rate on second floor

$$
\begin{aligned}
A_{1} v_{1} & =A_{2} v_{2} \\
v_{2} & =\frac{A_{1} v_{1}}{A_{2}} \\
v_{2} & =\frac{\pi\left(2 \times 10^{-2} \mathrm{~m}\right)^{2}\left(0.5 \mathrm{~ms}^{-1}\right)}{\pi\left(0.5 \times 10^{-2}\right)^{2}} \\
v_{2} & =8.0 \mathrm{~ms}^{-1}
\end{aligned}
$$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
13

- Calculate pressure on second floor
$\frac{1}{2} \rho v_{1}^{2}+\rho g z_{1}+p_{1}=\frac{1}{2} \rho v_{2}^{2}+\rho g z_{2}+p_{2}$
$p_{2}=\frac{1}{2} \rho\left(v_{1}^{2}-v_{2}^{2}\right)-\rho g\left(z_{1}-z_{2}\right)+p_{1}$
$p_{2}=\frac{1}{2}\left(1000 \mathrm{kgm}^{3}\right)\left(\left(0.5 \mathrm{~ms}^{-2}\right)^{2}-\left(8 \mathrm{~ms}^{-2}\right)^{2}\right)+\left(1000 \mathrm{kgm}^{3}\right)\left(9.81 \mathrm{~ms}^{-2}\right)(0-5 \mathrm{~m})+3 \times 10^{5} \mathrm{~Pa}$
$p_{2}=2.2 \times 10^{5} \mathrm{~Pa}$ $p_{2}=2.2 \times 10^{5} \mathrm{~Pa}$
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
14

Applications of Bernoulli's Principle

- Airplane wings and dynamic lift
- Venturi tubes
- Pitot static tubes
- Baseball
- Flow out of a container \qquad
- Lack of blood to the brain
- Underground burrows \qquad
\qquad
15

16

- Realistically, the pressure varies along curved streamlines and therefore Bernoulli's equation must be applied separately at every point on each streamline
- Lift occurs because the streamlines follow the curvature of the wing
- While it is not necessary to consider friction to describe lift, it is because of friction that the streamlines take the shape of the wing
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
17

Venturi Tubes

- A pipe with a narrow constriction (throat) \qquad

\qquad
- The flowing air speeds up as it passes through this constriction, so the pressure \qquad is lower in the throat

19

\qquad
\qquad

20

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Baseball

\qquad

- When throwing a curveball, the pitcher
\qquad puts a spin on the ball as it is leaving his hand \qquad
- The ball drags a thin layer of air with it ("boundary layer") as it travels \qquad
\qquad
\qquad
\qquad
22
- Friction provided by the stitches of the baseball causes a thin layer of air to move around the spinning ball in such a way that air pressure on top of the ball is greater
\qquad than on the bottom causing the ball to curve downward

23

- Consequently, a spinning baseball has more air turbulence on top of the ball, which produces a slower air speed over the ball
- At the same time, air moving under the ball accelerates and moves faster, producing less pressure on the bottom of \qquad the ball
- The ball moves downward faster than \qquad would normally be expected because of this. \qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
25

Flow out of a container

- Bernoulli's equation can be used to calculate the velocity a liquid flowing out of a hole at the bottom of a container

26

- Both points on the streamline are open to the atmosphere so they will be at the same pressure (atmospheric pressure)
- If the diameter of the hole is much smaller than the opening at the top, then the velocity at the top will be approximately zero
- The Bernoulli equation will be

$$
\begin{aligned}
& \rho g h=\frac{1}{2} \rho v_{y}^{2} \\
& v_{y}=\sqrt{2 g h}
\end{aligned}
$$

- This result is called Torricelli's theorem
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Lack of Blood to the Brain

- Bernoulli's principle is used to explain a TIA (transient ischemic attack - temporary lack of blood supply to the brain)
- Blood normally flows to the brain through two vertebral arteries (one on either side of the neck)
- These arteries are connected to the subclavian arteries

28

- If there is a blockage in the subclavian artery on one side, then the blood velocity on that side will increase
- This will result in lower pressure at the
 vertebral artery
- Thus blood flowing up the "good" side may be diverted down into the other vertebral artery

29

Underground Burrows

- If animals that live underground are to \qquad avoid suffocation, the air must circulate in their burrows
- The burrow must have at least two different entrances
- The speed of the air at the two entrances will usually be slightly different resulting in
\qquad a pressure difference at each opening \qquad
\qquad
- This will force air to flow through the burrow (following Bernoulli's principle)

\qquad
\qquad
\qquad
\qquad
- If one entrance is higher than the other, then the effect is enhance (since wind speed tends to increase with height)

31

Viscosity

- Real fluids have a certain amount of \qquad internal friction called viscosity
- In a viscous fluid in laminar flow, each
\qquad layer impedes the motion of its neighboring layers
\qquad
\qquad
\qquad
32
- In a pipe, the layers adjacent to the walls are stationary while the layers in the center travel with greatest speed \qquad

hyperphysics. phy-astr. gsu.eduhbaselprici.hmm
\qquad
\qquad
\qquad
\qquad
\qquad
- Viscosity is highly dependent on temperature
- Liquids become less viscous at higher temperatures
- Gasses become more viscous at higher temperatures
- Viscosity is expressed quantitatively by a coefficient of viscosity, η
- The coefficient of viscosity is calculated determining the force necessary to drag a fluid between two plates
\qquad

enx.org/contents/PCK_wk3i@5N/iscosity-and-Laminar-FIow-Poi
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
35

Stoke's Law

- As a sphere falls through a viscous liquid it flows around it
- If we knew the precise velocities near the sphere we could calculate the total viscous force by integrating over the sphere

- This was done by Sir George Gabriel Stokes (born in Ireland) in the 1940s.
- The drag force F_{D} on a sphere of radius r moving through a fluid of viscosity η at speed v is given by: \qquad

$$
F_{D}=6 \pi \eta r v
$$

\qquad
\qquad
\qquad
\qquad
\qquad
37

Example

\qquad

- A stainless steel ($\rho=8000 \mathrm{kgm}^{-3}$) ball of \qquad radius 1 cm is dropped into olive oil ($\rho=800 \mathrm{kgm}^{-3}, \eta=0.1$ Pa s). Calculate the \qquad terminal velocity of the ball.

38

- At terminal velocity the net force on the ball is zero.

$$
\begin{aligned}
& 0=\rho_{b} V g-\rho_{f} V g-6 \pi \eta r v \\
& v=\frac{V g\left(\rho_{b}-\rho_{f}\right)}{6 \pi \eta r} \\
& =\frac{4 \pi r^{3} g\left(\rho_{b}-\rho_{f}\right)}{(3) 6 \pi \eta r} \\
& v=\frac{2 r^{2} g\left(\rho_{b}-\rho_{f}\right)}{9 \eta}
\end{aligned}
$$

\qquad
\qquad
\qquad

40

Turbulence

- At low velocities fluids flow steadily and in layers that do not mix
- As the velocity increases or objects project into the fluid it becomes turbulent
- It is not easy to predict when the rate of flow is sufficiently high to cause the onset of turbulence

41

Reynolds Number

- The Reynolds number is a dimensionless quantity that is used to help predict the transition from laminar to turbulent flow
- The concept was introduced by George Gabriel Stokes in 1851, but named after Osborne Reynolds (1842-1912), who popularized its use in 1883

Reynolds Number
- The Reynolds number is a dimensionless
quantity that is used to help predict the
transition from laminar to turbulent flow
- The concept was introduced by George
Gabriel Stokes in 1851, but named after
Osborne Reynolds (1842-1912), who
popularized its use in 1883

\qquad

- For a fluid flowing with speed v in a pipe of radius r, the Reynolds number is defined as:

$$
R=\frac{v r \rho}{\eta}
$$

- We have turbulent flow if this number exceeds about 1000

43

Example

\qquad

- Air of density $1.2 \mathrm{kgm}^{-3}$ flows at a speed of $2.1 \mathrm{~ms}^{-1}$ through a pipe of radius 5.0 mm . The viscosity of the air is $1.8 \times 10^{-5} \mathrm{~Pa} \mathrm{~s}$.
- Show that the flow is laminar.
- Above what speed would the flow become turbulent?

44

$$
\begin{aligned}
R & =\frac{\nu r \rho}{\eta}=\frac{\left(2.1 \mathrm{~ms}^{-1}\right)\left(5.0 \times 10^{-3} \mathrm{~m}\right)\left(1.2 \mathrm{kgm}^{-3}\right)}{1.8 \times 10^{-5} \mathrm{~Pa} \mathrm{~s}} \\
& =700
\end{aligned}
$$

- $\mathrm{R}<1000$ so flow is laminar
- Minimum speed for turbulent flow would be for $\mathrm{R}=1000$

$$
\begin{aligned}
v & =\frac{R \eta}{r \rho}=\frac{(1000)\left(1.8 \times 10^{-5} \mathrm{~Pa} \mathrm{~s}\right)}{\left(5.0 \times 10^{-3} \mathrm{~m}\right)\left(1.2 \mathrm{kgm}^{-3}\right)} \\
& =3 \mathrm{~ms}^{-1}
\end{aligned}
$$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
45

